indicated. The hexafluoroarsenate ions occupy the corners of the cell and centers of the *ab* faces. The S_2N^+ cations occupy the remaining four faces of the cell.

The S_2N^+ cation is linear and has six weak F–S contacts (see Table 2), at approximately 90% of the sum of the van der Waals radii. The S–N bond distance in the S_2N^+ cation of S_2N^+ .AsF₆ [1.480(3)Å] is longer than or equal to the corresponding bond distances in S_2N^+ .SbCl₆ [1.463(4)Å] (Faggiani, Gillespie, Lock & Tyrer, 1978) or S_2N^+ .AlCl₄ [1.464(5), 1.472(5)Å] (Thewalt, Berhalter & Müller, 1982).

The strengths of the cation-anion contacts generally increase with the Lewis basicity of the anions (As $F_6 <$ $SbCl_{6}^{-} < AlCl_{4}^{-}$), and therefore it was anticipated that the S–N distance in the AsF_6^- salt might be shorter than the others. On the other hand, the averages of the symmetric and asymmetric S-N stretching frequencies in the AsF $_{6}^{-}$ and SbCl $_{6}^{-}$ salts are almost the same, 1095 and 1093 cm⁻¹, respectively (Banister, Hey, MacLean & Passmore, 1982). Consistently, stretching frequencies and force contacts for the AsF_6^- , SbF_6^- , $SO_3F^$ and NO_3^- salts of the related NO_2^+ are also very similar (Qureshi, Carter & Aubke, 1971). On this basis, the S–N distances in the SbCl₆ and AsF₆ salts would be expected to be about the same. A correction for thermal effects using the 'riding model' (Busing & Levy, 1963) gives S-N distances of 1.490 [SbF₆], 1.510 [AsF₆], 1.494 and 1.517 Å for the two S–N distances in the $AlCl_4^-$ salt (Thewalt, Berhalter & Müller, 1982). No noticeable trend is observable in these bond distances and they are not significantly different from one another.

We thank NSERC for financial support (JPJ, JP and PSW), SERC for a research grant (AJB and AGK) and NATO for a travel grant 267/85 (AJB and JP).

References

- APBLETT, A., GREIN, F., JOHNSON, J. P., PASSMORE, J. & WHITE, P. S. (1986). *Inorg. Chem.* 25, 422–426.
- BANISTER, A. J., HEY, R. G., MACLEAN, G. K. & PASSMORE, J. (1982). Inorg. Chem. 21, 1679–1680.
- BONDI, A. (1964). J. Phys. Chem. 68, 441.
- BUSING, W. R. & LEVY, H. A. (1963). Acta Cryst. 17, 142-146.
- FAGGIANI, R., GILLESPIE, R. J., LOCK, C. J. L. & TYRER, J. D. (1978). *Inorg. Chem.* 17, 2975–2978.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- QURESHI, A., CARTER, H. & AUBKE, F. (1971). Can. J. Chem. 49, 35.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- THEWALT, U., BERHALTER, K. & MÜLLER, P. (1982). Acta Cryst. B38, 1280–1282.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1987). C43, 1653–1655

Crystal Structure of a New Adduct Between Telluric Acid and Alkali cyclo-Triphosphates: Te(OH)₆.Na₃P₃O₉.K₃P₃O₉

BY M. T. AVERBUCH-POUCHOT AND A. DURIF

Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à USTMG, 166 X, 38042 Grenoble CEDEX, France

(Received 1 December 1986; accepted 16 April 1987)

Abstract. $M_r = 889 \cdot 74$, monoclinic, C2/c, $a = 18 \cdot 42$ (1), $b = 10 \cdot 644$ (5), $c = 12 \cdot 348$ (8) Å, $\beta = 119 \cdot 76$ (5)°, V = 2102 (2) Å³, Z = 4, $D_x = 2 \cdot 811$ Mg m⁻³, λ (Ag $K\bar{\alpha}$) = 0.5608 Å, $\mu = 1 \cdot 38$ mm⁻¹, F(000) = 1720, T = 298 K, R = 0.017 for 2553 independent reflexions. The crystal structure is built up of planes ($z \simeq 0.0$ and 0.5) of a hexagonal network of P₃O₉ groups centred by Te(OH)₆ groups, alternating with planes ($z \simeq 0.25$ and 0.75) of the associated cations.

Introduction. Addition compounds between telluric acid and alkali *cyclo*-triphosphates have been widely investigated. Structural investigations have been reported

0108-2701/87/091653-03\$01.50

for Te(OH)₆.2Na₃P₃O₉.6H₂O (Boudjada, Averbuch-Pouchot & Durif, 1981*a*; Boudjada, Lambert-Andron & Boucherle, 1985; Boudjada, 1981), Te(OH)₆.K₃-P₃O₉.2H₂O (Boudjada, 1981; Boudjada, Averbuch-Pouchot & Durif, 1981*b*), Te(OH)₆.Rb₃P₃O₉.H₂O (Boudjada & Durif, 1982), and Te(OH)₆.2(NH₄)₃P₃O₉ (Boudjada, Boudjada & Guitel, 1983). Up to now, only one adduct between a mixed-alkali *cyclo*-triphosphate and tclluric acid has been reported: Te(OH)₆.Cs₂Na-P₃O₉ (Boudjada, 1985). As in all the adducts between telluric acid and various kinds of inorganic phosphates, condensed or not, one observes in their atomic frameworks the coexistence of independent Te(OH)₆ and phosphoric anionic groups. In the present work we

© 1987 International Union of Crystallography

Table 1. Final atomic coordinates for Te(OH)₆.Na₃P₃ (1974). Enraf-Nonius (1977) SDP used for all cal- $O_9.K_3P_3O_9$ and B_{eq} for non-H atoms, B_{iso} for H atoms

$\boldsymbol{B}_{eq} = \frac{4}{3} \sum_{i} \sum_{j} \boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j} \boldsymbol{\beta}_{ij}.$						
	x	У	Ζ	$B_{\rm eq}/B_{\rm iso}({\rm \AA}^2)$		
Te	1	1	0	1.07(1)		
K(1)	1 de la companya de l	0.14423 (8)	1 .	1.75 (2)		
K(2)	Ō•19707 (3)	0.05296 (6)	0.24996 (5)	1.77 (2)		
P(1)	0.33257 (3)	0.33279 (6)	0.47715 (5)	0.99 (1)		
P(2)	0.48865 (3)	0.32332 (6)	0.47711 (5)	0.99 (1)		
P(3)	0.09408 (3)	0.40606 (6)	0.52284 (5)	0.99 (1)		
Na(1)	0.09947 (6)	0.3495 (1)	0.24998 (9)	1.62 (3)		
Na(2)	1	0.5510(2)	1	1.61 (3)		
O(1)	Õ-33408 (10)	0.3676 (2)	0·1046 (2)	1.90 (4)		
O(2)	0.20158 (10)	0.2649 (2)	0.1048 (1)	1.91 (4)		
O(3)	0.31902 (11)	0.1174(2)	0.1049 (2)	1.93 (4)		
O(L12)	0.39884 (9)	0.3845 (2)	0.4375 (1)	1.17 (3)		
O(E11)	0.25159 (10)	0-3925 (2)	0.3908 (2)	1.45 (3)		
O(E12)	0.13088 (10)	0.1578 (2)	0.3858 (1)	1.47 (3)		
O(L13)	0.32711 (9)	0.1871 (2)	0.4374 (1)	1.17 (3)		
O(E21)	0.04350 (10)	0.1678 (2)	0.1142(1)	1.46 (3)		
O(E22)	0.51584 (9)	0.3718 (2)	0.3906 (1)	1.45 (3)		
O(L23)	0.46155 (9)	0.1783 (2)	0.4374 (1)	1.17 (3)		
O(E31)	0.12650 (10)	0.4856 (2)	0-1090(1)	1.45 (3)		
O(E32)	0.04861 (10)	0.4242 (2)	0.3860 (1)	1.45 (3)		
H(1)	0.370 (2)	0.364 (4)	0.093 (3)	2.7 (8)		
H(2)	0.178 (2)	0.323 (4)	0.095 (3)	3.0 (9)		
H(3)	0-293 (2)	0.067 (4)	0.087 (3)	2.9 (9)		

describe the second example of an adduct between a mixed-alkali cyclo-triphosphate and telluric acid: $Te(OH)_6$.Na₃P₃O₉.K₃P₃O₉.

Experimental. When a concentrated aqueous solution of $Na_3P_3O_9$, $K_3P_3O_9$ and $Te(OH)_6$ (2/1/3) is slowly evaporated at room temperature the first crystallization occurring after some days gives large hexagonal prisms of $Te(OH)_6$.2Na₃P₃O₉.6H₂O. At the end of its crystallization this phase is removed and the remaining aqueous solution again kept at room temperature for some days. A second crystallization of slightly distorted octahedra of $Te(OH)_6$. Na₃P₃O₉. K₃P₃O₉ then occurs.

Crystal size: almost regular octahedron (edge = 0.16 mm); Enraf-Nonius CAD-4 diffractometer; graphite monochromator; θ range 3–35°; ω scan; scan width 1.20° ; scan speed $0.01-0.04^{\circ}$ s⁻¹; two standard reflexions (444 and $\overline{444}$), no significant variation; unit-cell refinement with 18 reflexions ($10 < \theta < 11^\circ$); 8816 reflexions collected (*hkl*, $\bar{h}kl$); $h_{max} = 32$, k_{max} = 20, $l_{\text{max}} = 19$; systematic absences: hkl (h + k = 2n), h0l (h = 2n, l = 2n); Lorentz-polarization correction, no absorption correction. Structure solved by classical methods: three-dimensional Patterson function and successive Fourier syntheses; H atoms from difference Fourier map; final refinements with 2553 independent reflexions $(F > 4\sigma_F)$; full-matrix refinements on F with anisotropic thermal parameters for non-H atoms; unit weights; max. $\Delta/\sigma = 0.36$ [x of H(2)]; max. $\Delta\rho$ $= 0.36 \text{ e} \text{ Å}^{-3}$; final R = 0.017, wR = 0.021, S =1.036. Scattering factors for neutral atoms and f', f''from International Tables for X-ray Crystallography

culations. Computer: PDP 11-70.

Table 1 reports the final atomic coordinates with B_{eq} and B_{iso} for the H atoms and Table 2 the main interatomic distances and bond angles of this atomic arrangement.*

Discussion. As in the other adducts between telluric acid and inorganic phosphates, condensed or not, one observes the coexistence of two distinct types of anions in the atomic arrangement: phosphoric anions (here

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43976 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table	2.	Mai	n in	teratom	ic distances	(Å)	and	bond
angles	(°	') in	the	atomic	arrangemen	it of	Te(C)H)6
				Na ₃ P ₃ O	9.K3P3O9			

P(1)O ₄ tetrahedi	on			
P(1)	O(L12)	O(L13)	O(E11)	O(E12)
O(L12)	1.620 (2)	2.482 (2)	2.479 (2)	2.539 (2)
O(L13)	100.23 (9)	1.614 (2)	2.500 (2)	2.532 (2)
O(E11)	106-1 (1)	107.8(1)	1.478 (2)	2.579 (2)
O(E12)	109-8 (1)	109-6 (1)	121-2(1)	1.481 (2)
P(2)O ₄ tetrahedr	on			
P(2)	O(L12)	O(L23)	O(E21)	O(E22)
O(L12)	1.612 (2)	2.481 (2)	2.529 (2)	2.498 (2)
O(L23)	100.23 (9)	1.621(2)	2.541(2)	2.480 (2)
O(E21)	109-6 (1)	109.8(1)	1.482 (2)	2.581 (2)
O(E22)	107.7 (1)	106-1 (1)	121.3 (1)	1.480 (2)
P(3)O ₄ tetrahed	on			
P(3)	O(L13)	O(L23)	O(E31)	O(E32)
$O(L_{13})$	1.620(2)	2.479 (2)	2.479 (2)	2.538 (2)
O(L23)	100.16(9)	1.612 (2)	2.499 (2)	2.528 (2)
O(E31)	106.2(1)	107.8(1)	1.479 (2)	2.577 (2)
O(E32)	109.9 (1)	109.6(1)	$\frac{1}{121\cdot 2(1)}$	1.480(2)
P(1)P(2)	2.8771 (8)	P(2)-P(3) 2.87	/82 (9)
P(1)-P(3)	2.8790 (9)			
$P(1) = O(L_12) = P(L_2)$	2) 125.8(1)	P(2)_P(1)-P(3)	60.00 (2)
$P(1) = O(L_13) = P(1)$	$125 \cdot 8(1)$	P(1) - P(2)	P(3)	60.03 (2)
$P(2) = O(L_23) = P(2)$	$125 \cdot 8(1)$	P(1) - P(3)	-P(2)	59.96 (2)
T O 1		- (-) - (-	/ - (-/	c, , , , (2)
TeO_6 octahedror	n			
TeO(1)	1·910 (2) (×2)	Te-O(3)	1.91	1 (2) (×2)
TeO(2)	1·909 (2 (×2)			
KO. polyhedra				
K(1) = O(3)	$2.911(2)(\times 2)$	K(2)-O(1) 2.91	0(2)
K(1) - O(E22)	2.909 (2) (×2)	K(2)-O(2) 2.90	(2)
K(1) = O(L23)	2.759 (2) (×2)	K(2) = O(1)	(12) 2.7 6	(2)
K(1) - O(E32)	2.759 (2) (×2)	K(2) = O(1)	E(12) = 2.91 E(11) = 2.91	0(2)
	(/ (/	K(2)-O(E(12) = 2.75	3 (2)
		K(2)O(L(13) = 2.76	$\frac{1}{2}$ (2)
		K(2) - O(1)	E(21) = 2.74	7 (2)
		K(2)–O(E31) 2-91	4 (2)
NaO polyhedro				
NaO ₆ polyneura	0 400 (0)			
Na(1) = O(E11)	2.499 (2)	Na(2)-0	(E12) = 2.43	$(2)(\times 2)$
Na(1) - O(E12)	2.519(2)	Na(2)O	(E21) 2·51	7 (2) (×2)
Na(1) = O(E21)	2.429 (2)	Na(2)O	(E22) 2.45	(2) (×2)
Na(1) = O(E31)	2.497 (2)			
Na(1) = O(E32) Na(1) = O(E32)	2.427(2)			
ra(1) = O(E32)	2.319 (2)	c.		-
	O—H (Å)	H…O (Å) (O−H…O (°)	0–0 (Å)
$O(1)-H(1)\cdots O(E$	22) 0.74 (4)	2.02 (4)	164 (4)	2.736 (3)
$O(2)-H(2)\cdots O(E$	31) 0.73 (4)	2.02 (4)	167 (4)	2.740 (3)
$O(3)-H(3)\cdots O(E)$	11) 0.68 (4)	2.10 (4)	156 (4)	2.737 (3)

Fig. 1. Projection along the c axis of the atomic arrangement of $Te(OH)_6$.Na₃P₃O₉.K₃P₃O₉.

 P_3O_9) and $Te(OH)_6$ groups, linked only by hydrogen bonds.

Fig. 1 is a projection of the atomic arrangement on the ab plane. H atoms of the Te(OH)₆ groups are not represented.

The P_3O_9 ring anion

The P₃O₉ ring anions have no internal symmetry. The three P atoms and the bonding O atom (OL) are almost coplanar in a plane perpendicular to the c axis. These ring planes are distributed in $z \simeq 0.0$ and 0.5. All geometrical features of the P₃O₉ group are reported in Table 2 and do not depart significantly from previous observations of other cyclo-triphosphates.

The Te(OH)₆ octahedron

The Te(OH)₆ group is centrosymmetric and located around the $(\frac{1}{44}0, \frac{1}{43}0; \frac{1}{44}1, \frac{1}{442})$ inversion centres. This group is quite regular, Te–O distances ranging from 1.909 to 1.911 Å. Associated cation polyhedra

Within a range of 3 Å, the two K atoms are coordinated to eight O atoms. The $K(1)O_8$ polyhedron has a binary symmetry. The two Na atoms have an octahedral oxygen coordination; one of the NaO₆ polyhedra [Na(2)O₆] has twofold symmetry.

Geometrical details for the $Te(OH)_6$ group and the associated cation polyhedra are given in Table 2.

The general arrangement of this atomic framework can be simply described by considering the respective locations of Te(OH)₆ groups and P₃O₉ rings in planes $z \simeq 0.0$ and 0.5. In such planes P₃O₉ anions form an almost regular hexagonal network, each (P₃O₉)₆ hexagon being centred by a Te(OH)₆ group. The six O atoms of the central Te(OH)₆ group are connected by hydrogen bonds to external O atoms of the six different P₃O₉ rings building the surrounding hexagon. Numerical details of the hydrogen-bond scheme are reported in Table 2.

Associated cations are all situated in the intermediate planes ($z \simeq 0.25$ and 0.75).

References

- BOUDJADA, N. (1981). Z. Anorg. Allg. Chem. 477, 225-228.
- BOUDJADA, N. (1985). Thèse d'Etat, Univ. of Grenoble, France.
- BOUDJADA, N., AVERBUCH-POUCHOT, M. T. & DURIF, A. (1981a). Acta Cryst. B37, 645–647.
- BOUDJADA, N., AVERBUCH-POUCHOT, M. T. & DURIF, A. (1981b). Acta Cryst. B37, 647–649.
- BOUDJADA, N., BOUJADA, A. & GUITEL, J. C. (1983). Acta Cryst. C39, 656–658.
- BOUDJADA, N. & DURIF, A. (1982). Acta Cryst. B38, 595-597.
- BOUDJADA, N., LAMBERT-ANDRON, B. & BOUCHERLE, J. X. (1985). Z. Kristallogr. 172, 45–53.
- Enraf-Nonius (1977). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Acta Cryst. (1987). C43, 1655–1659

Structural Phase Transitions in Chevrel Phases Containing Divalent Metal Cations. I. Structure Refinement of Rhombohedral MMo_6S_8 (M = Eu, Sr, Ba) at Room Temperature

By F. KUBEL AND K. YVON

Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland

(Received 19 March 1986; accepted 29 September 1986)

Abstract. Single-crystal X-ray diffraction data on MMo_6S_8 (M = Eu, Sr, Ba) at T = 294 K and ambient pressure are reported: $M_r = 984 \cdot 1$, 919.8, 969.5, space group $R\overline{3}$, Mo K α radiation ($\lambda = 0.71069$ Å), $a_{rh} =$

6.5535 (2), 6.5702 (3), 6.6507 (3) Å, $\alpha = 88.918$ (3), 89.003 (5), 88.584 (6)°, V = 281.32 (2), 283.50 (3), 293.90 (4) Å³, Z = 1, $D_x = 5.809$, 5.387, 5.477 Mg m⁻³, $\mu = 13.21$, 12.18, 10.68 mm⁻¹, F(000)

0108-2701/87/091655-05\$01.50

© 1987 International Union of Crystallography